21 research outputs found

    Multitemporal Analysis in Mediterranean Forestland with Remote Sensing

    Get PDF
    The study employs a Fourier transform analysis approach to assess the land-cover changes in a mountainous Mediterranean protected area using multi-temporal satellite images. Harmonic analysis was applied to a time series of Landsat satellite images acquired from 1984 to 2008 to extract information about land cover status with a vegetation spectral index, the Normalized Difference Vegetation Index (NDVI). Ancillary cartographic information depicting land cover classes and the enlargement of the protected area over time (i.e., maps showing the original delineation in 1995 and subsequent enlargement in 2007) were employed as additional factors to understand vegetation-cover changes. Significant differences in the NDVI and harmonic components values were observed with respect to both factors. The application of the Fourier transform was particularly successful to extract subtle information. The harmonic analysis of the NDVI time series revealed valuable information about the evolution of the landscape. The initially protected area (northern sector) seems more affected by human activities than the southern sector (enlarged area in 2007) as revealed by the analysis of the first harmonic component that was closely related with vegetation coverage. Rural abandonment is a major driver of land-cover changes in the study area

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio

    Spectral indices for the detection of salinity effects in melon plants

    Get PDF
    Water scarcity and soil salinization affect large semiarid agricultural areas throughout the world. The maintenance of agricultural productivity implies better agricultural practices and a careful selection of resistant crops. A proper monitoring of the physiological status of plants can lead to better knowledge of plant nutritional requirements. Visible and near-infrared (VNIR) radiometry provides a non-destructive and quantitative method to monitor vegetation status by quantifying chemical properties using spectroscopic techniques. In this study, the capability of VNIR spectral measurements to detect salinity effects on melon (Cucumis melo L.) plants was tested. Melon plants were cultivated under multiple soil salinity conditions (electrical conductivity, (EC)1:5: 0.5, 1.0 and 2.5 dS m-1). Spectral data of leaves were transformed into vegetation indices indicative of the physiological status of the plants. The results showed differences for N (p < 0.05), K and Na content (p < 0.01) due to salinity suggesting different degrees of salt stress on the plants. Specific leaf area increased with salinity levels (p < 0.001). The capabilities of VNIR radiometry to assess the influence of soil salinity on melon physiology using a non-destructive method were demonstrated. A normalized difference vegetation index (NDVI750-705), and the ratio between water index (WI) and normalized difference vegetation index (WI/NDVI750-705) showed significant relationships (p < 0.01) with the salinity. Therefore, this method could be used for in-situ early detection of salinity stress effects

    Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area

    No full text
    Mediterranean coastal areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor vegetation phenological variations. This study quantitatively describes Enhanced Vegetation Index (EVI) temporal changes for Mediterranean land-covers from the perspective of vegetation phenology and its relation with climate. A time series from 2001 to 2007 of the MODIS Enhanced Vegetation Index 16-day composite (MOD13Q1) was analyzed to extract anomalies (by calculating z-scores) and frequency domain components (by the Fourier Transform). Vegetation phenology analyses were developed for diverse land-covers for an area in south Alicante (Spain) providing a useful way to analyze and understand the phenology associated to those land-covers. Time series of climatic variables were also analyzed through anomaly detection techniques and the Fourier Transform. Correlations between EVI time series and climatic variables were computed. Temperature, rainfall and radiation were significantly correlated with almost all land-cover classes for the harmonic analysis amplitude term. However, vegetation phenology was not correlated with climatic variables for the harmonic analysis phase term suggesting a delay between climatic variations and vegetation response

    Monitoring Urban Wastewaters’ Characteristics by Visible and Short Wave Near-Infrared Spectroscopy

    No full text
    On-line monitoring of wastewater parameters is a major scientific and technical challenge because of the great variability of wastewater characteristics and the extreme physical-chemical conditions that endure the sensors. Wastewater treatment plant managers require fast and reliable information about the input sewage and the operation of the different treatment stages. There is a great need for the development of sensors for the continuous monitoring of wastewater parameters. In this sense, several optical systems have been evaluated. This article presents an experimental laboratory-based approach to quantify commonly employed urban wastewater parameters, namely biochemical oxygen demand in five days (BOD5), chemical oxygen demand (COD), total suspended solids (TSS), and the ratio BOD5:COD, with a visible and short wave near infrared (V/SW-NIR) spectrometer (400–1000 nm). Partial least square regression (PLSR) models were developed in order to quantify the wastewater parameters with the recorded spectra. PLSR models were developed for the full spectral range and also for the visible and near infrared spectral ranges separately. Good PLSR models were obtained with the visible spectral range for BOD5 (RER = 9.64), COD (RER = 10.88), and with the full spectral range for the TSS (RER = 9.67). The results of this study show that V/SW-NIR spectroscopy is a suitable technique for on-line monitoring of wastewater parameters
    corecore